4 训练词向量
学习目标¶
- 了解词向量的相关知识.
- 掌握fasttext工具训练词向量的过程.
1 训练词向量介绍¶
1.1 词向量的相关知识:¶
- 用向量表示文本中的词汇(或字符)是现代机器学习中最流行的做法, 这些向量能够很好的捕捉语言之间的关系, 从而提升基于词向量的各种NLP任务的效果.
1.2 练词向量的过程¶
- 第一步: 获取数据
- 第二步: 训练词向量
- 第三步: 模型超参数设定
- 第四步: 模型效果检验
- 第五步: 模型的保存与重加载
2 实现步骤¶
2.1 数据介绍¶
数据集仍然使用:英语维基百科的部分网页信息
注意:原始数据集已经放在/root/data/enwik9.zip,解压后数据为/root/data/enwik9,预处理后的数据为/root/data/fil9
- 查看预处理后的数据:
# 查看前80个字符
head -c 80 data/fil9
# 输出结果为由空格分割的单词
anarchism originated as a term of abuse first used against early working class
2.2 训练词向量¶
# 代码运行在python解释器中
# 导入fasttext
>>> import fasttext
# 使用fasttext的train_unsupervised(无监督训练方法)进行词向量的训练
# 它的参数是数据集的持久化文件路径'data/fil9'
# 注意,该行代码执行耗时很长
>>> model1 = fasttext.train_unsupervised('data/fil9')
# 可以使用以下代码加载已经训练好的模型
>>> model = fasttext.load_model("data/fil9.bin")
# 有效训练词汇量为124M, 共218316个单词
Read 124M words
Number of words: 218316
Number of labels: 0
Progress: 100.0% words/sec/thread: 53996 lr: 0.000000 loss: 0.734999 ETA: 0h 0m
查看单词对应的词向量:
# 通过get_word_vector方法来获得指定词汇的词向量
>>> model.get_word_vector("the")
array([-0.03087516, 0.09221972, 0.17660329, 0.17308897, 0.12863874,
0.13912526, -0.09851588, 0.00739991, 0.37038437, -0.00845221,
...
-0.21184735, -0.05048715, -0.34571868, 0.23765688, 0.23726143],
dtype=float32)
2.3 模型超参数设定¶
# 在训练词向量过程中, 我们可以设定很多常用超参数来调节我们的模型效果, 如:
# 无监督训练模式: 'skipgram' 或者 'cbow', 默认为'skipgram', 在实践中,skipgram模式在利用子词方面比cbow更好.
# 词嵌入维度dim: 默认为100, 但随着语料库的增大, 词嵌入的维度往往也要更大.
# 数据循环次数epoch: 默认为5, 但当你的数据集足够大, 可能不需要那么多次.
# 学习率lr: 默认为0.05, 根据经验, 建议选择[0.01,1]范围内.
# 使用的线程数thread: 默认为12个线程, 一般建议和你的cpu核数相同.
>>> model = fasttext.train_unsupervised('data/fil9', "cbow", dim=300, epoch=1, lr=0.1, thread=8)
Read 124M words
Number of words: 218316
Number of labels: 0
Progress: 100.0% words/sec/thread: 49523 lr: 0.000000 avg.loss: 1.777205 ETA: 0h 0m 0s
2.4 模型效果检验¶
# 检查单词向量质量的一种简单方法就是查看其邻近单词, 通过我们主观来判断这些邻近单词是否与目标单词相关来粗略评定模型效果好坏.
# 查找"运动"的邻近单词, 我们可以发现"体育网", "运动汽车", "运动服"等.
>>> model.get_nearest_neighbors('sports')
[(0.8414610624313354, 'sportsnet'), (0.8134572505950928, 'sport'), (0.8100415468215942, 'sportscars'), (0.8021156787872314, 'sportsground'), (0.7889881134033203, 'sportswomen'), (0.7863013744354248, 'sportsplex'), (0.7786710262298584, 'sporty'), (0.7696356177330017, 'sportscar'), (0.7619683146476746, 'sportswear'), (0.7600985765457153, 'sportin')]
# 查找"音乐"的邻近单词, 我们可以发现与音乐有关的词汇.
>>> model.get_nearest_neighbors('music')
[(0.8908010125160217, 'emusic'), (0.8464668393135071, 'musicmoz'), (0.8444250822067261, 'musics'), (0.8113634586334229, 'allmusic'), (0.8106718063354492, 'musices'), (0.8049437999725342, 'musicam'), (0.8004694581031799, 'musicom'), (0.7952923774719238, 'muchmusic'), (0.7852965593338013, 'musicweb'), (0.7767147421836853, 'musico')]
# 查找"小狗"的邻近单词, 我们可以发现与小狗有关的词汇.
>>> model.get_nearest_neighbors('dog')
[(0.8456876873970032, 'catdog'), (0.7480780482292175, 'dogcow'), (0.7289096117019653, 'sleddog'), (0.7269964218139648, 'hotdog'), (0.7114801406860352, 'sheepdog'), (0.6947550773620605, 'dogo'), (0.6897546648979187, 'bodog'), (0.6621081829071045, 'maddog'), (0.6605004072189331, 'dogs'), (0.6398137211799622, 'dogpile')]
2.5 模型的保存与重加载¶
# 使用save_model保存模型
>>> model.save_model("data/fil91.bin")
# 使用fasttext.load_model加载模型
>>> model = fasttext.load_model("data/fil91.bin")
>>> model.get_word_vector("the")
array([-0.03087516, 0.09221972, 0.17660329, 0.17308897, 0.12863874,
0.13912526, -0.09851588, 0.00739991, 0.37038437, -0.00845221,
...
-0.21184735, -0.05048715, -0.34571868, 0.23765688, 0.23726143],
dtype=float32)
3 小结¶
- 学习了词向量的相关知识:
-
用向量表示文本中的词汇(或字符)是现代机器学习中最流行的做法, 这些向量能够很好的捕捉语言之间的关系, 从而提升基于词向量的各种NLP任务的效果.
-
使用fasttext工具训练词向量的过程:
- 第一步: 获取数据
- 第二步: 训练词向量
- 第三步: 模型超参数设定
- 第四步: 模型效果检验
- 第五步: 模型的保存与重加载