跳转至

1 BERT模型介绍

学习目标

  • 了解什么是BERT

  • 掌握BERT的架构

  • 掌握BERT的预训练任务

思考题:Bert模型的架构以及每一部分的作用?

思考题:Bert模型两大预训练任务,并谈一谈你的理解?

1 BERT简介

BERT是2018年10月由Google AI研究院提出的一种预训练模型.

  • BERT的全称是Bidirectional Encoder Representation from Transformers.
  • BERT在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩: 全部两个衡量指标上全面超越人类, 并且在11种不同NLP测试中创出SOTA表现. 包括将GLUE基准推高至80.4% (绝对改进7.6%), MultiNLI准确度达到86.7% (绝对改进5.6%). 成为NLP发展史上的里程碑式的模型成就.

2 BERT的架构

总体架构: 如下图所示, 最左边的就是BERT的架构图, 可以很清楚的看到BERT采用了Transformer Encoder block进行连接, 因为是一个典型的双向编码模型.

从上面的架构图中可以看到, 宏观上BERT分三个主要模块.

  • 最底层黄色标记的Embedding模块.
  • 中间层蓝色标记的Transformer模块.
  • 最上层绿色标记的预微调模块.

2.1 Embedding模块

BERT中的该模块是由三种Embedding共同组成而成, 如下图

  • Token Embeddings 是词嵌入张量, 第一个单词是CLS标志, 可以用于之后的分类任务.

  • Segment Embeddings 是句子分段嵌入张量, 是为了服务后续的两个句子为输入的预训练任务.

  • Position Embeddings 是位置编码张量, 此处注意和传统的Transformer不同, 不是三角函数计算的固定位置编码, 而是通过学习得出来的.

  • 整个Embedding模块的输出张量就是这3个张量的直接加和结果.

2.2 双向Transformer模块

BERT中只使用了经典Transformer架构中的Encoder部分, 完全舍弃了Decoder部分. 而两大预训练任务也集中体现在训练Transformer模块中.

2.3 预微调模块

  • 经过中间层Transformer的处理后, BERT的最后一层根据任务的不同需求而做不同的调整即可.
  • 比如对于sequence-level的分类任务, BERT直接取第一个[CLS] token 的final hidden state, 再加一层全连接层后进行softmax来预测最终的标签.
  • 对于不同的任务, 微调都集中在预微调模块, 几种重要的NLP微调任务架构图展示如下

  • 从上图中可以发现, 在面对特定任务时, 只需要对预微调层进行微调, 就可以利用Transformer强大的注意力机制来模拟很多下游任务, 并得到SOTA的结果. (句子对关系判断, 单文本主题分类, 问答任务(QA), 单句贴标签(NER))

  • 若干可选的超参数建议如下:

Batch size: 16, 32
Learning rate (Adam): 5e-5, 3e-5, 2e-5
Epochs: 3, 4

3 BERT的预训练任务

BERT包含两个预训练任务:

  • 任务一: Masked LM (带mask的语言模型训练)
  • 任务二: Next Sentence Prediction (下一句话预测任务)

3.1 任务一: Masked LM

带mask的语言模型训练

  • 关于传统的语言模型训练, 都是采用left-to-right, 或者left-to-right + right-to-left结合的方式, 但这种单向方式或者拼接的方式提取特征的能力有限. 为此BERT提出一个深度双向表达模型(deep bidirectional representation). 即采用MASK任务来训练模型.

  • 1: 在原始训练文本中, 随机的抽取15%的token作为参与MASK任务的对象.

  • 2: 在这些被选中的token中, 数据生成器并不是把它们全部变成[MASK], 而是有下列3种情况.

  • 2.1: 在80%的概率下, 用[MASK]标记替换该token, 比如my dog is hairy -> my dog is [MASK]

  • 2.2: 在10%的概率下, 用一个随机的单词替换token, 比如my dog is hairy -> my dog is apple
  • 2.3: 在10%的概率下, 保持该token不变, 比如my dog is hairy -> my dog is hairy

  • 3: 模型在训练的过程中, 并不知道它将要预测哪些单词? 哪些单词是原始的样子? 哪些单词被遮掩成了[MASK]? 哪些单词被替换成了其他单词? 正是在这样一种高度不确定的情况下, 反倒逼着模型快速学习该token的分布式上下文的语义, 尽最大努力学习原始语言说话的样子. 同时因为原始文本中只有15%的token参与了MASK操作, 并不会破坏原语言的表达能力和语言规则.

3.2 任务二: Next Sentence Prediction

下一句话预测任务

  • 在NLP中有一类重要的问题比如QA(Quention-Answer), NLI(Natural Language Inference), 需要模型能够很好的理解两个句子之间的关系, 从而需要在模型的训练中引入对应的任务. 在BERT中引入的就是Next Sentence Prediction任务. 采用的方式是输入句子对(A, B), 模型来预测句子B是不是句子A的真实的下一句话.

  • 1: 所有参与任务训练的语句都被选中作为句子A.

  • 1.1: 其中50%的B是原始文本中真实跟随A的下一句话. (标记为IsNext, 代表正样本)

  • 1.2: 其中50%的B是原始文本中随机抽取的一句话. (标记为NotNext, 代表负样本)

  • 2: 在任务二中, BERT模型可以在测试集上取得97%-98%的准确率.

4 小结

  • 学习了什么是BERT.

    • BERT是一个基于Transformer Encoder的预训练语言模型.
    • BERT在11种NLP测试任务中创出SOAT表现.
  • 学习了BERT的结构.

    • 最底层的Embedding模块, 包括Token Embeddings, Segment Embeddings, Position Embeddings.
    • 中间层的Transformer模块, 只使用了经典Transformer架构中的Encoder部分.
    • 最上层的预微调模块, 具体根据不同的任务类型来做相应的处理.
  • 学习了BERT的两大预训练任务.

    • MLM任务(Masked Language Model), 在原始文本中随机抽取15%的token参与任务.
      • 在80%概率下, 用[MASK]替换该token.
      • 在10%概率下, 用一个随机的单词替换该token.
      • 在10%概率下, 保持该token不变.
    • NSP任务(Next Sentence Prediction), 采用的方式是输入句子对(A, B), 模型预测句子B是不是句子A的真实的下一句话.
      • 其中50%的B是原始文本中真实跟随A的下一句话.(标记为IsNext, 代表正样本)
      • 其中50%的B是原始文本中随机抽取的一句话. (标记为NotNext, 代表负样本)
  • 本节常见问答

    • 说一说Bert模型的架构以及每一部分的作用?
    • 说一说Bert模型两大预训练任务,并谈一谈你的理解?