跳转至

5 词向量迁移

学习目标

  • 了解什么是词向量迁移.
  • 了解fasttext工具中有哪些可迁移的词向量模型.
  • 掌握如何使用fasttext进行词向量模型迁移.

1 词向量迁移介绍

  • 使用在大型语料库上已经进行训练完成的词向量模型.

  • fasttext工具中可以提供的可迁移的词向量:

    • fasttext提供了157种语言的在CommonCrawl和Wikipedia语料上进行训练的可迁移词向量模型, 它们采用CBOW模式进行训练, 词向量维度为300维. 可通过该地址查看具体语言词向量模型: https://fasttext.cc/docs/en/crawl-vectors.html
    • fasttext提供了294种语言的在Wikipedia语料上进行训练的可迁移词向量模型, 它们采用skipgram模式进行训练, 词向量维度同样是300维. 可通过该地址查看具体语言词向量模型: https://fasttext.cc/docs/en/pretrained-vectors.html

2 使用fasttext进行词向量迁移

  • 第一步: 下载词向量模型压缩的bin.gz文件
  • 第二步: 解压bin.gz文件到bin文件
  • 第三步: 加载bin文件获取词向量
  • 第四步: 利用邻近词进行效果检验

2.1 下载词向量模型压缩的bin.gz文件

# 这里我们以迁移在CommonCrawl和Wikipedia语料上进行训练的中文词向量模型为例:
# 下载中文词向量模型(bin.gz文件)
wget https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.zh.300.bin.gz

2.2 解压bin.gz文件到bin文件

# 使用gunzip进行解压, 获取cc.zh.300.bin文件
gunzip cc.zh.300.bin.gz

2.3 加载bin文件获取词向量

# 加载模型
>>> model = fasttext.load_model("cc.zh.300.bin")

# 查看前100个词汇(这里的词汇是广义的, 可以是中文符号或汉字))
>>> model.words[:100]
[',', '的', '。', '</s>', '、', '是', '一', '在', ':', '了', '(', ')', "'", '和', '不', '有', '我', ',', ')', '(', '“', '”', '也', '人', '个', ':', '中', '.', '就', '他', '》', '《', '-', '你', '都', '上', '大', '!', '这', '为', '多', '与', '章', '「', '到', '」', '要', '?', '被', '而', '能', '等', '可以', '年', ';', '|', '以', '及', '之', '公司', '对', '中国', '很', '会', '小', '但', '我们', '最', '更', '/', '1', '三', '新', '自己', '可', '2', '或', '次', '好', '将', '第', '种', '她', '…', '3', '地', '對', '用', '工作', '下', '后', '由', '两', '使用', '还', '又', '您', '?', '其', '已']


# 使用模型获得'音乐'这个名词的词向量
>>> model.get_word_vector("音乐")
array([-6.81843981e-02,  3.84048335e-02,  4.63239700e-01,  6.11658543e-02,
        9.38086119e-03, -9.63955745e-02,  1.28141120e-01, -6.51574507e-02,
        ...
        3.13430429e-02, -6.43611327e-02,  1.68979481e-01, -1.95011273e-01],
      dtype=float32)    

2.4 利用邻近词进行效果检验

# 以'音乐'为例, 返回的邻近词基本上与音乐都有关系, 如乐曲, 音乐会, 声乐等.
>>> model.get_nearest_neighbors("音乐")
[(0.6703276634216309, '乐曲'), (0.6569967269897461, '音乐人'), (0.6565821170806885, '声乐'), (0.6557438373565674, '轻音乐'), (0.6536258459091187, '音乐家'), (0.6502416133880615, '配乐'), (0.6501686573028564, '艺术'), (0.6437276005744934, '音乐会'), (0.639589250087738, '原声'), (0.6368917226791382, '音响')]


# 以'美术'为例, 返回的邻近词基本上与美术都有关系, 如艺术, 绘画, 霍廷霄(满城尽带黄金甲的美术师)等.
>>> model.get_nearest_neighbors("美术")
[(0.724744975566864, '艺术'), (0.7165924310684204, '绘画'), (0.6741853356361389, '霍廷霄'), (0.6470299363136292, '纯艺'), (0.6335071921348572, '美术家'), (0.6304370164871216, '美院'), (0.624431312084198, '艺术类'), (0.6244068741798401, '陈浩忠'), (0.62302166223526, '美术史'), (0.621710479259491, '环艺系')]


# 以'周杰伦'为例, 返回的邻近词基本上与明星有关系, 如杰伦, 周董, 陈奕迅等.
>>> model.get_nearest_neighbors("周杰伦")
[(0.6995140910148621, '杰伦'), (0.6967097520828247, '周杰倫'), (0.6859776377677917, '周董'), (0.6381043195724487, '陈奕迅'), (0.6367626190185547, '张靓颖'), (0.6313326358795166, '张韶涵'), (0.6271176338195801, '谢霆锋'), (0.6188404560089111, '周华健'), (0.6184280514717102, '林俊杰'), (0.6143589019775391, '王力宏')]

3 小结

  • 学习了什么是词向量迁移:

    • 使用在大型语料库上已经进行训练完成的词向量模型.
  • 学习了fasttext工具中可以提供的可迁移的词向量:

    • fasttext提供了157种语言的在CommonCrawl和Wikipedia语料上进行训练的可迁移词向量模型, 它们采用CBOW模式进行训练, 词向量维度为300维. 可通过该地址查看具体语言词向量模型: https://fasttext.cc/docs/en/crawl-vectors.html
    • fasttext提供了294种语言的在Wikipedia语料上进行训练的可迁移词向量模型, 它们采用skipgram模式进行训练, 词向量维度同样是300维. 可通过该地址查看具体语言词向量模型: https://fasttext.cc/docs/en/pretrained-vectors.html
  • 如何使用fasttext进行词向量模型迁移:

    • 第一步: 下载词向量模型压缩的bin.gz文件
    • 第二步: 解压bin.gz文件到bin文件
    • 第三步: 加载bin文件获取词向量
    • 第四步: 利用邻近词进行效果检验